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Numerous nucleoside analogs have been synthesized and iso­
lated from natural sources, and their biological activities have also 
been extensively investigated. While it would be almost impossible 
to isolate a new type of base per se since synthetic efforts have 
effectively provided examples of most variations on the base unit,2 

it would be important to isolate as a natural product a base unit 
which had previously been obtained only by chemical synthesis 
(nature mimics man!). 

In the course of our systematic screening for antiviral, anti­
fungal, antibacterial, and cytotoxic compounds from cyanobacteria 
(blue-green algae), we found that a MeOH extract of Anabaena 
affinis strain VS-I showed strong cytotoxicity to Ll210 murine 
leukemia cells, and we assign here structures to two compounds, 
1 and 2, responsible for the cytotoxicity of the organism. This 
is the first report of the isolation and characterization of pyrro-
lo[3,2-</]pyrimidine derivatives as biosynthetic products.3 

A. affinis strain VS-I was isolated from a cyanobacterial 
water-bloom collected from Star Lake, Norwich, VT4 and cul­
tivated in Z-8 mineral medium according to the conditions reported 
by Carmichael.5 The lyophilized cells were extracted with 
MeOH-H2O (4:1), and the aqueous residue obtained after 
evaporation of the MeOH was passed through a CHP-20P column. 
The column was rinsed with H2O, and the active components were 
eluted with 15% EtOH-H2O and evaporated. Two active com­
ponents, 1 (0.25% of dried cell weight) and 2 (0.028%), were 
isolated by bioassay-guided separation of the residue using HPLC 
with an ODS column.6 

Compound 1, [a]28
D +21.9° (c 0.051, H2O), showed a mo­

lecular ion peak at m/z 429.1627 (Ci7H24N4O9, M + H, A -0.5 
mDa) in the high-resolution (HR) FAB mass spectrum obtained 
with dithiothreitol/dithioerythritol (magic bullet)7 as matrix. The 
1H NMR spectrum of 1 contained two aromatic proton signals 
and 13 one-proton signals ascribable to a pentose and a hexose.8 
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Six heteroatom-substituted aromatic 13C signals were detected 
in the 13C NMR spectrum of 1, together with 11 signals due to 
the sugar units.9 These data and the UV spectrum of 1 [Xma, 
(H2O) 287 (sh), 276, 268, and 229 nm; (0.01 N HCl) 272 and 
235 nm] suggested that 1 is a nucleoside with two sugar units. 

Collisionally induced tandem FABMS (FABMS/CID/MS) 
of 1 showed three major fragment ion peaks at m/z 177, 163, and 
147 (Scheme I), together with a strong fragment ion peak at m/z 
267 generated by the loss of the hexose unit, but a prominent peak 
due to (base + H2)

+ was not detected, suggesting a C-nucleoside.10 

This was confirmed by the chemical shifts of the anomeric center 
(5H, 4.87; 5C, 78.1), which were observed at relatively high fields 
in the 1H and 13C NMR spectra of 1. 

Subtraction of the sum of the two sugar units from the mo­
lecular formula of 1 gave C6H5N4 (133 Da) as the base unit. 
One-bond 1H-13C coupling constants of 13C signals at S 128.0 
(1Zc1H = 190 Hz) and 149.9 (]JCM = 207 Hz) were characteristic 

(8) 1H NMR data (500 MHz, 26 0C) for 1 in DMSO-(Z6 (2.49 ppm): S 
8.05 (s, H-2), 7.72 (d, J = 1.0 Hz, H-6), 4.87 (d, J = 5.0 Hz, H-I'), 4.74 (d, 
J = 3.5 Hz, H-I"), 4.25 (dd, J = 5.0, 5.0 Hz, H-2'), 4.06 (dd, J = 5.0, 4.5 
Hz, H-3'), 3.90 (ddd, J = 4.5, 3.5, 3.0 Hz, H-4'), 3.73 (dd, / = 11.0, 3.5 Hz, 
H-5'), 3.59 (dd, y = 11.5, 2.0 Hz, H-6"), 3.52 (dd, y - 11.0, 3.0 Hz, H-5'), 
3.48 (dd, J - 9.5, 9.0 Hz, H-3"), 3.43 (dd, J = 11.5, 5.5 Hz, H-6"), 3.39 (m, 
J = 9.0, 5.5, 2.0 Hz, H-5"), 3.23 (dd, J = 9.5, 3.5 Hz, H-2"), 3.08 (dd, J = 
9.0, 9.0 Hz, H-4"), all signals for 1 H; assigned by 1H-1H COSY and sin­
gle-frequency decoupling experiments. 

(9) 13C NMR data (125 MHz, 26 "C) for 1 in DMSO-</6 (39.5 ppm): 6 
150.8 (s), 149.9 (d, lJCH = 207 Hz, C-2), 144.4 (s), 128.0 (d, XJCH = 190 
Hz, C-6), 114.2 (s), 114.1 (s), 98.7 (d, C-I"), 81.8 (d, C-4'), 78.1 (d, C-I'), 
74.9 (d, C-2'), 73.4 (d, C-3"), 72.8 (d, C-5"), 72.3 (d, C-2"), 70.9 (d, C-3'), 
70.1 (d, C-4"), 66.9 (t, C-5'), 61.0 (t, C-6"); assigned by 1H-13C COSY 
experiment. 
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trom, D. E. Anal. Biochem. 1984, 139, 243-262. 
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for carbons attached to, respectively, one and two nitrogen atoms.11 

The 1H signal (5H 7.72) for the hydrogen attached to the former 
carbon (6C 128.0) showed long-range coupling (J = 1.0 Hz) to 
an anomeric proton (6H 4.89, H-T)- These data suggested that 
the base unit is either pyrrolo[2,3-rf]pyrimidine (i.e., 7-de-
azaadenine) or pyrrolo[3,2-</]pyrimidine (i.e., 9-deazaadenine). 
The ' 3C signals due to the aromatic carbons of 1 resemble those 
reported for 9-deazaadenine derivatives12 rather than 7-de-
azaadenine derivatives,13 although no pyrrolo[3,2-</]pyrimidine 
derivative has been reported from natural sources.3 UV spectra 
of 1, especially the shifts of absorption maxima in acidic solution, 
were also more like those of 9-deazaadenine14 than those of tu-
bercidin (7-deazaadenosine).15 Accordingly, the base unit in 1 
is most likely 9-deazaadenine. 

The 13C signals assigned to the hexose unit of 1 closely re­
sembled those of methyl a-D-glucopyranoside,16 suggesting that 
1 is the a-D-glucopyranoside of 9-deazaadenosine. 5'-a-D-
Glucopyranosides of tubercidin and toyocamycin (3 and 4, re­
spectively, Scheme II) have been isolated from cyanobacteria.17 

1H and 13C NMR data for the sugar units of 1 were very similar 
to those for 3 and 4, except for the signals due to the C-I' position. 
Moreover, enzymatic deglycosidation of 1 with a-D-glucosidase 
gave D-glucose and 2, which was isolated as the minor component 
(11% of 1) from the same cyanobacterium. 

Compound 2, [a]\ -28.4° (c 0.016, H2O), showed a molecular 
ion peak at m/z 267.1090 (C11H15N4O4, M + H, A +0.3 mDa) 
by HRFABMS. FABMS/CID/MS of 2 gave the same fragment 
ion peaks at m/z 177, 163, and 147 observed for 1 (Scheme I). 
The 1H NMR spectrum of 2 showed the signals ascribable to a 
ribose unit and two aromatic proton signals.18 

From the results above, the structure of 2 can be assigned as 
9-deazaadenosine, which has been synthesized by Lim and Klein 
as a cytotoxic C-nucleoside isostere of adenosine.19 The direct 
comparison of 2 with a synthetic sample of 9-deazaadenosine20 

by HPLC, TLC, and UV spectra confirmed that 2 was identical 
to synthetic 9-deazaadenosine.6 1H NMR data for natural 2 
hydrochloride were also identical with those for synthetic 2 hy­
drochloride.21 

Consequently, the structure of 1 was assigned as the 9-de­
azaadenosine 5'-a-D-glucopyranoside, as shown in Scheme I. 
Compounds 1 and 2 are pyrrolo[3,2-rf]pyrimidine derivatives which 
have not been reported previously as biosynthetic products,3 i.e., 
from natural sources. Their biosynthesis will be of considerable 
interest. 

The IC50S of 1 and 2 vs L1210 murine leukemia cells were 0.01 
and 0.002 Mg/mL, respectively. These compounds also showed 
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lethal toxicity to the aquatic invertebrate Ceriodaphnia dubia; 
the LC50S for acute (48 h) and chronic (7 day) toxicities were, 
respectively, 0.5 and 0.3 Mg/mL for 1 and 0.3 and 0.1 Mg/mL for 
2. 
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While arenium ions are known to be intermediates in electrc-
philic aromatic substitution reactions,1 the existence of 7r-complexes 
between an aromatic group and a cation remains elusive. In the 
gas phase the intermediacy of ir-complexes has often been pos­
tulated in the unimolecular fragmentation of aromatic cations,2"8 

but there is as yet no irrefutable evidence for their existence. The 
existence of ion-molecule complexes [C6H7

+ alkene] has been 
proposed from experimental results.8 In this work we have, for 
the first time, calculated the energy and structure of -̂complexes 
and ion-molecule complexes involving the benzenium ion and an 
alkene. This kind of system is a good example of the use of 
molecular orbital calculations in order to calculate the energy and 
to study the structure of ion-neutral complexes. This has been 
recently reviewed.9 

We have chosen to focus on one model: the complex inter­
mediates presumed to be involved in the unimolecular reaction 
of metastable10 protonated isopropylbenzene. It has been pre-
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